Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

TOP2β-Dependent Nuclear DNA Damage Shapes Extracellular Growth Factor Responses via Dynamic AKT Phosphorylation to Control Virus Latency.

Identifieur interne : 000220 ( Main/Exploration ); précédent : 000219; suivant : 000221

TOP2β-Dependent Nuclear DNA Damage Shapes Extracellular Growth Factor Responses via Dynamic AKT Phosphorylation to Control Virus Latency.

Auteurs : Hui-Lan Hu [États-Unis] ; Lora A. Shiflett [États-Unis] ; Mariko Kobayashi [États-Unis] ; Moses V. Chao [États-Unis] ; Angus C. Wilson [États-Unis] ; Ian Mohr [États-Unis] ; Tony T. Huang [États-Unis]

Source :

RBID : pubmed:30930055

Descripteurs français

English descriptors

Abstract

The mTOR pathway integrates both extracellular and intracellular signals and serves as a central regulator of cell metabolism, growth, survival, and stress responses. Neurotropic viruses, such as herpes simplex virus-1 (HSV-1), also rely on cellular AKT-mTORC1 signaling to achieve viral latency. Here, we define a novel genotoxic response whereby spatially separated signals initiated by extracellular neurotrophic factors and nuclear DNA damage are integrated by the AKT-mTORC1 pathway. We demonstrate that endogenous DNA double-strand breaks (DSBs) mediated by Topoisomerase 2β-DNA cleavage complex (TOP2βcc) intermediates are required to achieve AKT-mTORC1 signaling and maintain HSV-1 latency in neurons. Suppression of host DNA-repair pathways that remove TOP2βcc trigger HSV-1 reactivation. Moreover, perturbation of AKT phosphorylation dynamics by downregulating the PHLPP1 phosphatase led to AKT mis-localization and disruption of DSB-induced HSV-1 reactivation. Thus, the cellular genome integrity and environmental inputs are consolidated and co-opted by a latent virus to balance lifelong infection with transmission.

DOI: 10.1016/j.molcel.2019.02.032
PubMed: 30930055
PubMed Central: PMC6499694


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">TOP2β-Dependent Nuclear DNA Damage Shapes Extracellular Growth Factor Responses via Dynamic AKT Phosphorylation to Control Virus Latency.</title>
<author>
<name sortKey="Hu, Hui Lan" sort="Hu, Hui Lan" uniqKey="Hu H" first="Hui-Lan" last="Hu">Hui-Lan Hu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry & Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry & Molecular Pharmacology, NYU School of Medicine, New York, NY 10016</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shiflett, Lora A" sort="Shiflett, Lora A" uniqKey="Shiflett L" first="Lora A" last="Shiflett">Lora A. Shiflett</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, NYU School of Medicine, New York, NY 10016</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kobayashi, Mariko" sort="Kobayashi, Mariko" uniqKey="Kobayashi M" first="Mariko" last="Kobayashi">Mariko Kobayashi</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, NYU School of Medicine, New York, NY 10016</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chao, Moses V" sort="Chao, Moses V" uniqKey="Chao M" first="Moses V" last="Chao">Moses V. Chao</name>
<affiliation wicri:level="2">
<nlm:affiliation>Skirball Institute of Biomolecular Medicine, Departments of Cell Biology, Physiology & Neuroscience and Psychiatry, NYU School of Medicine, New York, NY 10016, USA; NYU Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Skirball Institute of Biomolecular Medicine, Departments of Cell Biology, Physiology & Neuroscience and Psychiatry, NYU School of Medicine, New York, NY 10016, USA; NYU Neuroscience Institute, NYU School of Medicine, New York, NY 10016</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wilson, Angus C" sort="Wilson, Angus C" uniqKey="Wilson A" first="Angus C" last="Wilson">Angus C. Wilson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, NYU School of Medicine, New York, NY 10016</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mohr, Ian" sort="Mohr, Ian" uniqKey="Mohr I" first="Ian" last="Mohr">Ian Mohr</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Institute, NYU School of Medicine, New York, NY 10016, USA. Electronic address: ian.mohr@med.nyu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Institute, NYU School of Medicine, New York, NY 10016</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Huang, Tony T" sort="Huang, Tony T" uniqKey="Huang T" first="Tony T" last="Huang">Tony T. Huang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry & Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Institute, NYU School of Medicine, New York, NY 10016, USA. Electronic address: tony.huang@nyumc.org.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry & Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Institute, NYU School of Medicine, New York, NY 10016</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30930055</idno>
<idno type="pmid">30930055</idno>
<idno type="doi">10.1016/j.molcel.2019.02.032</idno>
<idno type="pmc">PMC6499694</idno>
<idno type="wicri:Area/Main/Corpus">000310</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000310</idno>
<idno type="wicri:Area/Main/Curation">000310</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000310</idno>
<idno type="wicri:Area/Main/Exploration">000310</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">TOP2β-Dependent Nuclear DNA Damage Shapes Extracellular Growth Factor Responses via Dynamic AKT Phosphorylation to Control Virus Latency.</title>
<author>
<name sortKey="Hu, Hui Lan" sort="Hu, Hui Lan" uniqKey="Hu H" first="Hui-Lan" last="Hu">Hui-Lan Hu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry & Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry & Molecular Pharmacology, NYU School of Medicine, New York, NY 10016</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shiflett, Lora A" sort="Shiflett, Lora A" uniqKey="Shiflett L" first="Lora A" last="Shiflett">Lora A. Shiflett</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, NYU School of Medicine, New York, NY 10016</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kobayashi, Mariko" sort="Kobayashi, Mariko" uniqKey="Kobayashi M" first="Mariko" last="Kobayashi">Mariko Kobayashi</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, NYU School of Medicine, New York, NY 10016</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chao, Moses V" sort="Chao, Moses V" uniqKey="Chao M" first="Moses V" last="Chao">Moses V. Chao</name>
<affiliation wicri:level="2">
<nlm:affiliation>Skirball Institute of Biomolecular Medicine, Departments of Cell Biology, Physiology & Neuroscience and Psychiatry, NYU School of Medicine, New York, NY 10016, USA; NYU Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Skirball Institute of Biomolecular Medicine, Departments of Cell Biology, Physiology & Neuroscience and Psychiatry, NYU School of Medicine, New York, NY 10016, USA; NYU Neuroscience Institute, NYU School of Medicine, New York, NY 10016</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wilson, Angus C" sort="Wilson, Angus C" uniqKey="Wilson A" first="Angus C" last="Wilson">Angus C. Wilson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, NYU School of Medicine, New York, NY 10016</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mohr, Ian" sort="Mohr, Ian" uniqKey="Mohr I" first="Ian" last="Mohr">Ian Mohr</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Institute, NYU School of Medicine, New York, NY 10016, USA. Electronic address: ian.mohr@med.nyu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Institute, NYU School of Medicine, New York, NY 10016</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Huang, Tony T" sort="Huang, Tony T" uniqKey="Huang T" first="Tony T" last="Huang">Tony T. Huang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry & Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Institute, NYU School of Medicine, New York, NY 10016, USA. Electronic address: tony.huang@nyumc.org.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry & Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Institute, NYU School of Medicine, New York, NY 10016</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular cell</title>
<idno type="eISSN">1097-4164</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>DNA Breaks, Double-Stranded (MeSH)</term>
<term>DNA Damage (genetics)</term>
<term>DNA End-Joining Repair (genetics)</term>
<term>DNA Repair (genetics)</term>
<term>DNA Repair Enzymes (genetics)</term>
<term>DNA Topoisomerases, Type II (genetics)</term>
<term>DNA-Binding Proteins (genetics)</term>
<term>Herpesvirus 1, Human (genetics)</term>
<term>Herpesvirus 1, Human (pathogenicity)</term>
<term>Humans (MeSH)</term>
<term>MRE11 Homologue Protein (genetics)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (genetics)</term>
<term>Neurons (metabolism)</term>
<term>Neurons (virology)</term>
<term>Nuclear Proteins (genetics)</term>
<term>Phosphorylation (MeSH)</term>
<term>Proto-Oncogene Proteins c-akt (genetics)</term>
<term>Rats (MeSH)</term>
<term>Signal Transduction (genetics)</term>
<term>TOR Serine-Threonine Kinases (genetics)</term>
<term>Virus Latency (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN topoisomérases de type II (génétique)</term>
<term>Altération de l'ADN (génétique)</term>
<term>Animaux (MeSH)</term>
<term>Cassures double-brin de l'ADN (MeSH)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (génétique)</term>
<term>Enzymes de réparation de l'ADN (génétique)</term>
<term>Herpèsvirus humain de type 1 (génétique)</term>
<term>Herpèsvirus humain de type 1 (pathogénicité)</term>
<term>Humains (MeSH)</term>
<term>Latence virale (génétique)</term>
<term>Neurones (métabolisme)</term>
<term>Neurones (virologie)</term>
<term>Phosphorylation (MeSH)</term>
<term>Protéine homologue de MRE11 (génétique)</term>
<term>Protéines de liaison à l'ADN (génétique)</term>
<term>Protéines nucléaires (génétique)</term>
<term>Protéines proto-oncogènes c-akt (génétique)</term>
<term>Rats (MeSH)</term>
<term>Réparation de l'ADN (génétique)</term>
<term>Réparation de l'ADN par jonction d'extrémités (génétique)</term>
<term>Sérine-thréonine kinases TOR (génétique)</term>
<term>Transduction du signal (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA Repair Enzymes</term>
<term>DNA Topoisomerases, Type II</term>
<term>DNA-Binding Proteins</term>
<term>MRE11 Homologue Protein</term>
<term>Mechanistic Target of Rapamycin Complex 1</term>
<term>Nuclear Proteins</term>
<term>Proto-Oncogene Proteins c-akt</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>DNA Damage</term>
<term>DNA End-Joining Repair</term>
<term>DNA Repair</term>
<term>Herpesvirus 1, Human</term>
<term>Signal Transduction</term>
<term>Virus Latency</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN topoisomérases de type II</term>
<term>Altération de l'ADN</term>
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Enzymes de réparation de l'ADN</term>
<term>Herpèsvirus humain de type 1</term>
<term>Latence virale</term>
<term>Protéine homologue de MRE11</term>
<term>Protéines de liaison à l'ADN</term>
<term>Protéines nucléaires</term>
<term>Protéines proto-oncogènes c-akt</term>
<term>Réparation de l'ADN</term>
<term>Réparation de l'ADN par jonction d'extrémités</term>
<term>Sérine-thréonine kinases TOR</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Neurons</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Neurones</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Herpesvirus 1, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Herpèsvirus humain de type 1</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Neurones</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Neurons</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>DNA Breaks, Double-Stranded</term>
<term>Humans</term>
<term>Phosphorylation</term>
<term>Rats</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cassures double-brin de l'ADN</term>
<term>Humains</term>
<term>Phosphorylation</term>
<term>Rats</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The mTOR pathway integrates both extracellular and intracellular signals and serves as a central regulator of cell metabolism, growth, survival, and stress responses. Neurotropic viruses, such as herpes simplex virus-1 (HSV-1), also rely on cellular AKT-mTORC1 signaling to achieve viral latency. Here, we define a novel genotoxic response whereby spatially separated signals initiated by extracellular neurotrophic factors and nuclear DNA damage are integrated by the AKT-mTORC1 pathway. We demonstrate that endogenous DNA double-strand breaks (DSBs) mediated by Topoisomerase 2β-DNA cleavage complex (TOP2βcc) intermediates are required to achieve AKT-mTORC1 signaling and maintain HSV-1 latency in neurons. Suppression of host DNA-repair pathways that remove TOP2βcc trigger HSV-1 reactivation. Moreover, perturbation of AKT phosphorylation dynamics by downregulating the PHLPP1 phosphatase led to AKT mis-localization and disruption of DSB-induced HSV-1 reactivation. Thus, the cellular genome integrity and environmental inputs are consolidated and co-opted by a latent virus to balance lifelong infection with transmission.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30930055</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>10</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1097-4164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>74</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2019</Year>
<Month>05</Month>
<Day>02</Day>
</PubDate>
</JournalIssue>
<Title>Molecular cell</Title>
<ISOAbbreviation>Mol Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>TOP2β-Dependent Nuclear DNA Damage Shapes Extracellular Growth Factor Responses via Dynamic AKT Phosphorylation to Control Virus Latency.</ArticleTitle>
<Pagination>
<MedlinePgn>466-480.e4</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S1097-2765(19)30143-1</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.molcel.2019.02.032</ELocationID>
<Abstract>
<AbstractText>The mTOR pathway integrates both extracellular and intracellular signals and serves as a central regulator of cell metabolism, growth, survival, and stress responses. Neurotropic viruses, such as herpes simplex virus-1 (HSV-1), also rely on cellular AKT-mTORC1 signaling to achieve viral latency. Here, we define a novel genotoxic response whereby spatially separated signals initiated by extracellular neurotrophic factors and nuclear DNA damage are integrated by the AKT-mTORC1 pathway. We demonstrate that endogenous DNA double-strand breaks (DSBs) mediated by Topoisomerase 2β-DNA cleavage complex (TOP2βcc) intermediates are required to achieve AKT-mTORC1 signaling and maintain HSV-1 latency in neurons. Suppression of host DNA-repair pathways that remove TOP2βcc trigger HSV-1 reactivation. Moreover, perturbation of AKT phosphorylation dynamics by downregulating the PHLPP1 phosphatase led to AKT mis-localization and disruption of DSB-induced HSV-1 reactivation. Thus, the cellular genome integrity and environmental inputs are consolidated and co-opted by a latent virus to balance lifelong infection with transmission.</AbstractText>
<CopyrightInformation>Copyright © 2019 Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Hui-Lan</ForeName>
<Initials>HL</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry & Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shiflett</LastName>
<ForeName>Lora A</ForeName>
<Initials>LA</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kobayashi</LastName>
<ForeName>Mariko</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chao</LastName>
<ForeName>Moses V</ForeName>
<Initials>MV</Initials>
<AffiliationInfo>
<Affiliation>Skirball Institute of Biomolecular Medicine, Departments of Cell Biology, Physiology & Neuroscience and Psychiatry, NYU School of Medicine, New York, NY 10016, USA; NYU Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wilson</LastName>
<ForeName>Angus C</ForeName>
<Initials>AC</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mohr</LastName>
<ForeName>Ian</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Institute, NYU School of Medicine, New York, NY 10016, USA. Electronic address: ian.mohr@med.nyu.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Tony T</ForeName>
<Initials>TT</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry & Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Institute, NYU School of Medicine, New York, NY 10016, USA. Electronic address: tony.huang@nyumc.org.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM056927</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM107257</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 AI130618</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI073898</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R56 NS021072</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>03</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Cell</MedlineTA>
<NlmUniqueID>9802571</NlmUniqueID>
<ISSNLinking>1097-2765</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004268">DNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C512690">Mre11 protein, rat</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C000608128">Nbn protein, rat</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009687">Nuclear Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C000625429">Rad50 protein, rat</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D051057">Proto-Oncogene Proteins c-akt</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.-</RegistryNumber>
<NameOfSubstance UI="D000076228">MRE11 Homologue Protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.3.16</RegistryNumber>
<NameOfSubstance UI="C553451">PHLPP1 protein, rat</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 5.99.1.3</RegistryNumber>
<NameOfSubstance UI="D004250">DNA Topoisomerases, Type II</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 6.5.1.-</RegistryNumber>
<NameOfSubstance UI="D045643">DNA Repair Enzymes</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Mol Cell. 2019 May 2;74(3):411-413</RefSource>
<PMID Version="1">31051136</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053903" MajorTopicYN="N">DNA Breaks, Double-Stranded</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004249" MajorTopicYN="N">DNA Damage</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059766" MajorTopicYN="N">DNA End-Joining Repair</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004260" MajorTopicYN="N">DNA Repair</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045643" MajorTopicYN="N">DNA Repair Enzymes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004250" MajorTopicYN="N">DNA Topoisomerases, Type II</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004268" MajorTopicYN="N">DNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018259" MajorTopicYN="N">Herpesvirus 1, Human</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076228" MajorTopicYN="N">MRE11 Homologue Protein</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009474" MajorTopicYN="N">Neurons</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009687" MajorTopicYN="N">Nuclear Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051057" MajorTopicYN="N">Proto-Oncogene Proteins c-akt</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051381" MajorTopicYN="N">Rats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017735" MajorTopicYN="N">Virus Latency</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">AKT</Keyword>
<Keyword MajorTopicYN="Y">DNA-PK</Keyword>
<Keyword MajorTopicYN="Y">Herpes simplex virus-1 (HSV-1)</Keyword>
<Keyword MajorTopicYN="Y">Mre11-Rad50-Nbs1 (MRN)</Keyword>
<Keyword MajorTopicYN="Y">Non-homologous end-joining (NHEJ)</Keyword>
<Keyword MajorTopicYN="Y">PHLPP1</Keyword>
<Keyword MajorTopicYN="Y">mTORC1</Keyword>
<Keyword MajorTopicYN="Y">topoisomerase 2 beta (TOP2b)</Keyword>
<Keyword MajorTopicYN="Y">tyrosyl-DNA-phosphodiesterase 2 (TDP2)</Keyword>
<Keyword MajorTopicYN="Y">viral latency</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>09</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>01</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>02</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>4</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>10</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>4</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30930055</ArticleId>
<ArticleId IdType="pii">S1097-2765(19)30143-1</ArticleId>
<ArticleId IdType="doi">10.1016/j.molcel.2019.02.032</ArticleId>
<ArticleId IdType="pmc">PMC6499694</ArticleId>
<ArticleId IdType="mid">NIHMS1522729</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Virol. 2004 May;78(9):4783-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15078960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Mar 23;25(6):917-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17386267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Invest Dermatol. 1975 Oct;65(4):341-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1176786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2017 Jan 31;18(5):1312-1323</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28147283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2017 Mar 2;231:41-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27836727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 May 17;411(6835):366-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11357144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Neurosci. 2005;28:191-222</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16022594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2013 Nov;16(11):1523-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24165679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Feb 18;280(7):5581-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15583002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2014 Jul 16;83(2):266-282</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25033177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Feb 24;311(5764):1141-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16497931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Neurosci. 2018 Mar;87:27-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29254824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2012 Dec 18;1:e00047</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23251783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vis Exp. 2012 Apr 02;(62):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22491318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):E3940-E3949</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29632185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2015 Feb 19;57(4):648-661</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25661488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2010 Dec 1;24(23):2627-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21123650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 1990 Apr;10(4):1268-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2158529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Dec;84(24):12504-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20943970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2017 May 19;16(10):968-978</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28388353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012 Feb;8(2):e1002540</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22383875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2015 Jun 18;161(7):1592-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26052046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2005 Apr 1;18(1):13-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15808505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Chem Biol. 2013 Jan 18;8(1):82-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23259582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2010 Oct 21;8(4):320-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20951966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2018 May 7;215(5):1287-1299</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29622565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1999 Mar 19;96(6):857-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10102273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2007 Apr;5(4):e95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17407381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Rev. 2012 Mar;246(1):311-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22435563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2009 May;9(5):327-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19377505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2013 May;16(5):613-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23525040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Sep 1;88(17):10146-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24965466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2014 Dec 23;7(357):ra121</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25538079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2017 Apr 21;13(4):e1006335</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28430817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2017 Aug;18(8):495-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28512351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Oct 1;461(7264):674-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19794497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1987 Jul;61(7):2311-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3035230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 Feb 27;5:3347</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24572510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2018 Nov 27;92(24):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30282708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pathogens. 2017 Jun 23;6(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28644417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Jun 27;289(26):17960-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24808172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2017 Nov 30;91(24):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28978699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 2017 Apr 26;35:313-336</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28142323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Nov 26;115(5):565-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14651848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Virol. 2018 Sep 29;5(1):141-164</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29996066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2015 Jun 9;11(9):1358-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26027929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2016 Aug 10;20(2):178-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27512903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2012 Jul 15;26(14):1527-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22802527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2008 Mar;6(3):211-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18264117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Jun;7(6):e1002084</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21698222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2013 Jun 27;3(6):2100-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23791529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2016 Feb 15;212(4):399-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26880199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2017 Apr 20;169(3):381-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28431241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2015 Dec 9;18(6):649-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26651941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2003 Sep;77(17):9192-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12915535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2011 Jul 1;10(13):2218-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21623170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011 Jun;7(6):e1002080</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21655080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2002 Mar 4;156(5):817-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11864996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2016 Nov 3;64(3):580-592</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27814490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Apr 19;102(16):5844-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15824307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancers (Basel). 2018 Mar 18;10(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29562639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Jan 7;286(1):403-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21030584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2017 Nov 1;96(3):667-679</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29096079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2008 Apr 25;30(2):203-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18439899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):2969-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23388631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Radiother Oncol. 2011 Oct;101(1):13-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21726915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2017 Feb 2;65(3):416-431.e6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28157504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2012 Dec;20(12):604-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22963857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2014 Jul 3;55(1):111-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24954902</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>État de New York</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Hu, Hui Lan" sort="Hu, Hui Lan" uniqKey="Hu H" first="Hui-Lan" last="Hu">Hui-Lan Hu</name>
</region>
<name sortKey="Chao, Moses V" sort="Chao, Moses V" uniqKey="Chao M" first="Moses V" last="Chao">Moses V. Chao</name>
<name sortKey="Huang, Tony T" sort="Huang, Tony T" uniqKey="Huang T" first="Tony T" last="Huang">Tony T. Huang</name>
<name sortKey="Kobayashi, Mariko" sort="Kobayashi, Mariko" uniqKey="Kobayashi M" first="Mariko" last="Kobayashi">Mariko Kobayashi</name>
<name sortKey="Mohr, Ian" sort="Mohr, Ian" uniqKey="Mohr I" first="Ian" last="Mohr">Ian Mohr</name>
<name sortKey="Shiflett, Lora A" sort="Shiflett, Lora A" uniqKey="Shiflett L" first="Lora A" last="Shiflett">Lora A. Shiflett</name>
<name sortKey="Wilson, Angus C" sort="Wilson, Angus C" uniqKey="Wilson A" first="Angus C" last="Wilson">Angus C. Wilson</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000220 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000220 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30930055
   |texte=   TOP2β-Dependent Nuclear DNA Damage Shapes Extracellular Growth Factor Responses via Dynamic AKT Phosphorylation to Control Virus Latency.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30930055" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020